GUSTO Observations of the [OI] 63 µm Fine Structure Transition

Paul Goldsmith

Jet Propulsion Laboratory, California Institute of Technology

GUSTO Project Scientist

GUSTO SCIENCE TEAM MEETING July 22, 2019

- Recent SOFIA/GREAT observations of [OI] in W3
- Prospects for observations of WNM and CNM
- Modeling [OI] emission with MOLPOP-CEP

SOFIA/GREAT Observations of W3

[OI], [NII], CO 5-4, & CO 8-7

D = 2.04 kpc

 $M = 4x10^5 M_{sun} (total)$

 $M = 6x10^4 M_{sun} (Main)$

 $M = 8x10^2 M_{sun} (East)$

 $L = 1x10^5 L_{sun} (East)$

 $N(H_2) = 1.8x10^{23}$ (East)

Rivera-Ingraham et al. 2013 Herschel PACS continuum observations Contours are of $N(H_2)$ 0;0 W3 C0(5-4) L S0F-4G1 0 S 0:12-DEC-2018 R:15-APR-2019 RA: 02:25:44.48 DEC: 62:06:11.7 Eq 2000.0 Rad. 0.0° Offs: +0.2 +3.1 Good tau: 0.131 Tsys: 515, Time: 66,0sec El: 34.2 N: 16384 | 10: 11468.3 V0: -40.80 Dv: -0.1270 LSR F0: 576267.931 Df: 0.2441 Fi: 586666.659

OI 63 L (smooth 20)

CO(5-4) L

CO(8-7) U

NII U (X4, smooth 20)

 $\Delta v_{FWHM}(CO 8-7) = 8 \text{ km/s}$

7;1 W3 OI 63 L SOF-HFAV 0 S 0:12-DEC-2018 R:15-APR-2019 RA: 02:25:44.48 DEC: 62:06:11.7 Eq 2000.0 Rad. 0.0° Offs: +0.7 -1.6

Fair tau: 0.360 Tsys: 5511. Time: 3.3min El: 33.4

N: 16384 IO: 5477.94 VO: -40.80 Dv: 1.5421E-02 LSR

FO: 4744777.49 Df: -0.2441 Fi: 4748108.63

Tmb([OI] 63) = 85 K

FO: 1461133.80 Df: 3.906 Fi: 1459534.00

[CII] in W3

- Contours are fractions of 2.5x10⁻³ erg s⁻¹ cm⁻² sr⁻¹
- At W3 (East) I ~ 1.5x10⁻³
- $\int T_A dv = 14 \text{ K km/s}$
- Assuming dv = 8 km/s
- $T_A \simeq 2 K$
- $T_A([NII])/T_A([CII]) \simeq 0.5$

This is a relatively LARGE value so the issue is really why [CII] is so weak!

Beamsize ~ 60" for KAO

Howe et al. 1991 - KAO data

[OI] Fine Structure Levels

Table 1. [OI] Fine Structure Transitions and Collisional Parameters

Transition	Frequency 1	Wavelength	$E_{ m u}/{ m k}$	$A_{ul}^{\ 2}$	$R_{ul}(H)^{3}$	$R_{ul}(H_2)^{3}$
	(GHz)	$(\mu \mathrm{m})$	(K)	(s^{-1})	$(10^{-10} {\rm cm}^3 {\rm s}^{-1})$	$(10^{-10} {\rm cm}^3 {\rm s}^{-1})$
$^{3}P_{0} - ^{3}P_{1}$	2060.069	145.53	326.6	1.7×10^{-5}	0.84	.0291
${}^{3}P_{1} - {}^{3}P_{2}$	4744.777	63.18	227.7	8.7×10^{-5}	1.12	1.74
${}^{3}P_{0} - {}^{3}P_{2}$	6804.847	44.06	326.6	1.4×10^{-10}	0.76	1.36

¹From Zink et al. (1991); these values supersede those of Saykally & Evenson (1979).

There is also ${}^3P_0 - {}^3P_2$ transition but 10^4 x weaker

²From Fischer & Saha (1983). There are slight differences among different different calculations and references, cf. Baluja & Zeippen (1988).

 $^{^3\}mathrm{At}$ kinetic temperature of 100 K

Critical Densities for [OI] Fine Structure Transitions & Excitation in Atomic ISM

based on Lique (2018) Collision Rate Coefficients

Table 4. Critical Densities for [O I] Fine Structure Transitions

Transition	$n_c({ m H}_2)$	$n_c(\mathrm{H})$	
	(cm^{-3})	(cm^{-3})	
145	5.8×10^{6}	2.0×10^{5}	
63	5.0×10^{5}	7.8×10^{5}	

Optical Depth of [OI] Fine Structure Transitions

Assume Gaussian line profile

$$\tau_0 = \frac{0.94 A_{ul} \lambda^3}{8\pi 10^5} \frac{g_u}{g_l}$$

$$au(
u_0) = au_0 rac{f_l N({
m cm}^{-2})}{\Delta v({
m kms}^{-1})}$$
 assuming highly subthermal excitation (T_{ex} << hf/k) f_l is the fraction of total column density, N_l , in lower level

Table 3. Maximum line center optical depth and lower level fractional populations for [O I] fine structure transitions

Transition	$ au_0$	fı			
		T(K)			
		50	100	250	400
145	6.52×10^{-18}	6.4×10^{-3}	5.8×10^{-2}	1.9×10^{-2}	2.4×10^{-1}
63	4.92×10^{-18}	9.9×10^{-1}	9.4×10^{-1}	7.7×10^{-1}	7.0×10^{-1}

Optical Depth of [OI] 63 µm

Assume $\Delta v = 5 \text{ km/s}$ $\tau = 10^{-18} \text{ N(O}^{0})$

If all oxygen is O^0 : $X(O^o) = 6.6x10^{-4}$ $\tau = 6.6x10^{-18}N(H^0)$ $N(H^0) = 1.5x10^{21} \text{ cm}^{-2} \text{ to have } \tau = 1$ $N(O^0) \text{ increases even after oxygen primarily locked up in CO } (A_v > 3)$

Can get τ (63 µm) \simeq 2 for large-N foreground cloud (or clouds) τ (145 µm) << 1 due to low population at density of WNM or CNM

Table 2. Conversion Factors

Transition	$\Delta E/k$	$T_A/I_ u$	$\int \! { m T}_A dv/I$	
	(K)	$({\rm K/erg~s^{-1}cm^{-2}sr^{-1}Hz^{-1}})$	$({\rm K~km~s^{-1}/erg~s^{-1}cm^{-2}sr^{-1}})$	
145	98.8	7.67×10^{11}	1.12×10 ⁵	
63	227.7	1.45×10^{11}	9.13×10^{3}	

 $63 \mu m$ [OI] line is optically thick but still is "effectively optically thin" below this line

 $I \alpha N(O^0)$

$$I = 10^{-4} = \int T_A dv = 1 \text{ K km/s}$$

Notes: W43 has I_{max} = 850 K km/s
This is only for single-component
emission regions ignoring all
subtleties

[OI] from the WNM

```
I = AN_uhv/4\pi
in highly subthermal limit
I = C_{12}N(O^0) hv/4\pi = 2.5x10^{-15} R_{12} n(H^0)N(O^0)
Choose WNM parameters
          T = 10^4 \text{ K}, R_{12} = 2.4 \times 10^{-10} \text{ @ } 10^3 \text{ K};
                      could be somewhat larger at 10<sup>4</sup> K
           n(H^0) = 1 cm^{-3}
           N(H^0) = 10^{21} \text{ cm}^{-2} => N(O^0) = 6.6 \times 10^{17} \text{ cm}^{-2}
I = 4x10^{-7} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ sr}^{-1}
\int T_{\Delta} dv = 0.0036 \text{ K km/s}
THIS WILL NOT BE DETECTABLE BY GUSTO
```


Wolfire et al. 2003

[OI] from the CNM

```
I = AN_{\parallel}hv/4\pi
in highly subthermal limit
I = C_{12}N(O^0) hv/4\pi = 2.5x10^{-15} R_{12} n(H^0)N(O^0)
Choose CNM parameters
          T = 10^2 \text{ K}, R_{12} = 7.2 \times 10^{-12} \text{n}(H^0)
          n(H^0) = 100 \text{ cm}^{-3}
          N(H^0) = 10^{21} \text{ cm}^{-2} => N(O^0) = 6.6 \times 10^{17} \text{ cm}
I = 1.2 \times 10^{-6} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ sr}^{-1}
\int T_A dv = 0.0011 \text{ K km/s}
THIS WILL NOT BE DETECTABLE BY GUSTO
```


[OI] from PDRs

The big difference is that you have large column density of warm, dense gas in which oxygen is still in atomic form due to radiation field

$$N(H_2) = 10^{23} \text{ cm}^{-2}$$

 $N(O^0) = 10^{20} \text{ cm}^{-2}$
 $T = 250 \text{ K}$
 $I = 3x10^{-2} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ sr}^{-1}$
 $\int T_A dv = 270 \text{ K km/s}$; with $dv = 5 \text{ km/s}$
 $T_A = 55 \text{ K}$

This is characteristic of resolved, energetic PDRs including W3 and others that GUSTO will cover in the Galactic Plane Survey (GPS)

READILY OBSERVABLE WITH GUSTO

MOLPOP-CEP

An Exact Method for Line Radiative Transfer

- 1. Elitzur & Asension Ramos (2006)
- 2. Asensio Ramos & Elitzur (2018)
- Divide cloud into slabs
- Compute the escape probability for photons from each slab
- Couple photons from various slabs together
- Iterate on # of slabs to get convergence
- "CEP" = Coupled Escape Probability
- Can handle slabs with varying conditions but I will discuss only "uniform" slabs

[OI] Fine Structure Levels

There is also ${}^3P_0 - {}^3P_2$ transition but 10^4 x weaker

Table 1. [O I] Fine Structure Transitions and Collisional Parameters

Transition	Frequency 1	Wavelength	$E_{\mathrm{u}}/\mathrm{k}$	${ m A}_{ul}{}^{2}$	$R_{ul}(H)^{3}$	$R_{ul}(H_2)^{3}$
	(GHz)	$(\mu \mathrm{m})$	(K)	(s^{-1})	$(10^{-10} {\rm cm}^3 {\rm s}^{-1})$	$(10^{-10} {\rm cm}^3 {\rm s}^{-1})$
$^{3}P_{0} - ^{3}P_{1}$	2060.069	145.53	326.6	1.7×10^{-5}	0.84	.0291
${}^{3}P_{1} - {}^{3}P_{2}$	4744.777	63.18	227.7	8.7×10^{-5}	1.12	1.74
${}^{3}P_{0} - {}^{3}P_{2}$	6804.847	44.06	326.6	1.4×10^{-10}	0.76	1.36

¹From Zink et al. (1991); these values supersede those of Saykally & Evenson (1979).

³At kinetic temperature of 100 K

²From Fischer & Saha (1983). There are slight differences among different different calculations and references, cf. Baluja & Zeippen (1988).

Photon Trapping Affects the Excitation Temperature when $\tau > 1$ and $n < n_{crit}$

Both transitions thermalized – T_{ex} uniform throughout slab

Trapping forces T_{ex} towards T_k

- 145 μm transition is superthermal so $T_{ex} \approx T_k$ at cloud edges
 - ⇒Tex lower in cloud center
- 63 μ m transition is subthermal so $T_{ex} < T_k$ at cloud edgs
 - ⇒T_{ex} higher in cloud center

Emergent Line Profiles are NOT Gaussians Although the Local Velocity Field is

 $T_k = 100 \text{ K}$ Red = 63 µm Blue = 145 µm

$$n(H_2) = 10^4 \text{ cm}^{-3}$$

 $n(H_2) = 10^7 \text{ cm}^{-3}$

Summary

- [OI] observations using SOFIA/GREAT confirm severe optical depth effects in 63 μ m line emission from PDR regions. This has been suggested by published data.
- [OI] is likely to be unobservable from WNM and CNM with GUSTO
- [NII] emission from W3 is relatively weak
- The MOLPOP-CEP statistical equilibrium & radiative transfer program correctly handles this, allowing for more meaningful line profiles than can be produced by e.g. LVG program
- Even in "uniform" slab, line profiles show effects of self-absorption by less excited O⁰ in the outer layers of the slab
- More realistic models combining physical variations as predicted by PDR models (Meudon) and MOLPOP-CEP should be a valuable tool for interpreting GUSTO data